Subject	Year	Month	
Mathematics	10	February	Balcarras
Topic:			
Straight line graphs			6 lessons
Content (Intent)			
Prior Learning Year 9 Straight line graphs March	Future Learning Year 10 Real life straight line graphs February Year 10 Quadratic graphs March Year 10 Simultaneous equations May Year 11 Graph sketching October Year 12 Pure Chapter 5 Straight line graphs		

Objectives

- Plot and draw graphs of $y=a, x=a, y=x$ and $y=-x$
- Identify and interpret the gradient of a line segment;
- Recognise that equations of the form $y=m x+c$ correspond to straight-line graphs in the coordinate plane;
- Identify \& interpret the gradient and y-intercept of a linear graph given by equations of the form $y=m x+c$;
- Find the equation of a straight line from a graph in the form $y=m x+c$;
- Plot and draw graphs of straight lines of the form $y=m x+c$ with and a table of values;
- Sketch a graph of a linear function, using the gradient and y-intercept (i.e. without a table of values):
- Find the equation of the line through one point with a given gradient;
- Identify and interpret gradient from an equation $a x+b y=c$;
- Find the equation of a straight line from a graph in the form $a x+b y=c$;
- Plot and draw graphs of straight lines in the form $a x+b y=c$;
- Interpret and analyse information presented in a range of linear graphs:
- use gradients to interpret how one variable changes in relation to another;
- find approximate solutions to a linear equation from a graph;
- identify direct proportion from a graph;
- find the equation of a line of best fit (scatter graphs) to model the relationship between quantities;
- Explore the gradients of parallel lines and lines perpendicular to each other;
- Interpret and analyse a straight-line graph and generate equations of lines parallel and perpendicular to the given line using the fact that when $y=m x+c$ is the equation of a straight line, then the gradient of a line parallel to it will have a gradient of m and a line perpendicular to this line will have a gradient of $-\frac{1}{m}$.
- Higher groups may wish to use $y-y_{1}=m\left(x-x_{1}\right)$

Pedagogical notes (implementation)		How will understanding be assessed \& recorded (Impact)	
Encourage students to sketch what information they are given in a question - emphasise that it is a sketch.		End of half term Assessment in Feb End of Year Mocks in April	
		How can parents help at home?	
		MathsWatch clips (Qualification KS4)	
Further reading/discussion			
Reading / Enrichment http://passyworldofmathematics.com/mountain-gradients/	Literacy	Numeracy Links	Careers Links Medicine - identify links Economist

| | | Meteorologists
 Actuaries graph risks |
| :--- | :--- | :--- | :--- |

